Total No. of Questions—5]

[Total No. of Printed Pages—4+2

Seat	
No.	

[5316]-5

F.Y B.Sc. (Computer Science) EXAMINATION, 2018

ELECTRONIC SCIENCE

Paper I

(ELE-101 : Principles of Analog Electronics)

(2013 PATTERN)

Time : Three Hours Maximum Marks : 80

- **N.B.** :— (i) All questions are compulsory.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (*iii*) Figures to the right indicate full marks.
- **1.** Attempt all of the following : [8×2=16]
 - (a) State working principle of transformer.
 - (b) Draw symbols for photodiode and varactor diode.
 - (c) Calculate voltage drop across 2.2 k Ω resistor :

P.T.O.

- (d) Define Q point and list the factors affecting stability of the transistor.
- (e) Give sign conventions for Kirchhoff's voltage law.
- (f) Draw output I-V characteristics of BJT in CE mode and show all regions in it.
- (g) In JFET circuit drain current changes by 20 mA, when V_{GS} changes by 2 V at a constant drain source voltage. Calculate drain resistance.
- (*h*) Define the terms differential mode gain and common mode gain of an op-amp.
- **2.** Attempt any *four* of the following : $[4\times4=16]$
 - (a) Explain the classification of capacitors.
 - (b) Find the value of R_L for which maximum power will be transferred for the following circuit :

[5316]-5

- (c) With the help of a neat circuit diagram explain the action of Zener diode as a regulator.
- (d) Explain the frequency response for a single stage R.C. coupled amplifier.
- (e) Explain the working of n-channel JFET with suitable diagram.
- (f) Explain the action of Schmitt trigger using operational amplifier.
- **3.** Attempt any *four* of the following : $[4\times4=16]$
 - (a) Define the following parameters related to operational amplifiers :
 - (*i*) Output impedance
 - (*ii*) PSRR
 - (*iii*) Output offset voltage
 - (*iv*) Input bias current.
 - (b) Explain the working of MOSFET as a switch.
 - (c) Distinguish between JFET and BJT.
 - (d) Explain the working principle of optocoupler.
 - (e) Calculate current through load resistor 15 Ω by using Thevenin's theorem :

(f) Explain SPDT and push to ON switch in detail.

[5316]-5

P.T.O.

- **4.** Attempt any *four* of the following : [4×4=16]
 - (a) Calculate coordinates of d.c. loadline for a silicon transistorin a circuit :

- (b) Define intrinsic stand-off ratio for UJT. Calculate intrinsic standoff ratio if $R_{B1} = 6 k\Omega$, $R_{B2} = 4 k\Omega$.
- (c) Explain the concept of virtual ground in an op-amp.
- (d) State the application of the following types of transformers :
 - (*i*) Step-up
 - (*ii*) Step-down
 - (iii) Isolation
 - (*iv*) Centre tapped.

[5316]-5

(e) Draw Norton's equivalent circuit for the following circuit :

- (f) Explain the working of series dipper.
- 5. Attempt any *two* of the following : $[2\times8=16]$
 - (a) (i) Explain working principle of optical fibre cable.
 - (ii) Calculate current through 2 k Ω resistor using Kirchhoff's laws :

- (b) (i) Distinguish between CB, CE and CC configurations of transistor.
 - (*ii*) Recognize the application of op-amp and find output voltage for the following circuits :

[5316]-5

- (c) (i) Define α and β for transistor. Derive the relation between α and β .
 - (*ii*) Derive the expression for discharging current of a capacitor and plot the graph of discharging current *versus* time.